Monthly Archives: September 2014

journal club

Parental olfactory experience influences behavior and neural structure in subsequent generations (Jana Husse)

AUTHORS: Brian G Dias & Kerry J Ressler

ABSTRACT: Using olfactory molecular specificity, we examined the inheritance of parental traumatic exposure, a phenomenon that has been frequently observed, but not understood. We subjected F0 mice to odor fear conditioning before conception and found that subsequently conceived F1 and F2 generations had an increased behavioral sensitivity to the F0-conditioned odor, but not to other odors. When an odor (acetophenone) that activates a known odorant receptor (Olfr151) was used to condition F0 mice, the behavioral sensitivity of the F1 and F2 generations to acetophenone was complemented by an enhanced neuroanatomical representation of the Olfr151 pathway. Bisulfite sequencing of sperm DNA from conditioned F0 males and F1 naive offspring revealed CpG hypomethylation in the Olfr151 gene. In addition, in vitro fertilization, F2 inheritance and cross-fostering revealed that these transgenerational effects are inherited via parental gametes. Our findings provide a framework for addressing how environmental information may be inherited transgenerationally at behavioral, neuroanatomical and epigenetic levels.

journal club

Amygdala-Dependent Fear Memory Consolidation via miR-34a and Notch Signaling (Valentina Mercaldo)

AUTHORS: Brian George Dias, Jared Vega Goodman, Ranbir Ahluwalia, Audrey Elizabeth Easton, Raul Andero, and Kerry James Ressler

ABSTRACT: Using an array-based approach after auditory fear conditioning and microRNA (miRNA) sponge-mediated inhibition, we identified a role for miR-34a within the basolateral amygdala (BLA) in fear memory consolidation. Luciferase assays and bioinformatics suggested the Notch pathway as a target of miR-34a. mRNA and protein levels of Notch receptors and ligands are downregulated in a time- and learning-specific manner after fear conditioning in the amygdala. Systemic and stereotaxic manipulations of the Notch pathway indicated that Notch signaling in the BLA suppresses fear memory consolidation. Impairment of fear memory consolidation after inhibition of miR-34a within the BLA is rescued by inhibiting Notch signaling. Together, these data suggest that within the BLA, a transient decrease in Notch signaling, via miR-34a regulation, is important for the consolidation of fear memory. This work expands the idea that developmental molecules have roles in adult behavior and that existing interventions targeting them hold promise for treating neuropsychiatric disorders.